Posts

Showing posts from September, 2017

Japanese words (will be updated later)

Konnichiwa - Hello sayonara - bye arigato - thank you baka - idiot hai - yes iie - no gommenasai - sorry matane - see you later oyasumi - good night ikou - let's go chaousi wadou - what's up? kudasai - please kampai - bottom's up watashi - I anata - you da me - oh no

Korean words (will be update later)

Shiro - Don't (do that) Kaamchakiya - That surprised me Anyong - Hello ye - yes aanio - no na - I ne - my dangsin - you dangsine - your hwanyong haeyo - welcome butak habnida - Please mian haeyo - sorry goma woyo - thanks gapsida - let's go hapsida - let's do it khambe - bottom's up fighting - for cheering urpose ottoke - how? yojim ottoke jineyo? - How are you? nappun - bad najunge - later najungewoyo - see you later irumin boya? - what's your name? busshun ireyo?  - what happened? yerobun - everyone

Pandas and list compare

import numpy as np import pandas as pd df = pd.DataFrame({'List1':[1,2,3, 4,5,5,11,4],'List 2':[3,5,6,8,9,3,4,9]}, columns=['List1', 'List 2']) #df.to_excel("list1.xlsx", header=True, index=False) df['Intersect']=pd.DataFrame( np.intersect1d(df['List1'], df['List 2'])) #unique common in both df['commonin1']=df['List1'][ np.in1d(df['List1'], df['List 2'])] #non unique common items of list 1 df['commonin2']=df['List 2'][np.in1d(df['List 2'], df['List1'])] #non unique common items of list 2 df['1not2']=pd.DataFrame(np. setdiff1d(df['List1'], df['List 2'])) #in list1 but not in list 2 df['2not1']=pd.DataFrame(np. setdiff1d(df['List 2'], df['List1'])) #in list 2 but not in list1 df['1not2NU']=df['List1'][~np. in1d(df['List1'], df['List 2'])] #in list1 but not in list 2 non unique d...